

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Nguyen Hung Thinh

3D REGISTRATION

Major: computer science

HA NOI - 2015

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Nguyen	
 Hung	
 Thinh	

3D REGISTRATION

Major: computer science

Supervisor: Assoc. Prof. Bui The Duy

Co-Supervisor: Dr. Ma Thi Chau

HA NOI - 2015

i

AUTHORSHIP

“I hereby declare that the work contained in this thesis is of my own and has not been

previously submitted for a degree or diploma at this or any other higher education institution.

To the best of my knowledge and belief, the thesis contains no materials previously published

or written by another person except where due reference or acknowledgement is made.”

Signature:………………………………………………

ii

SUPERVISOR’S APPROVAL

“I hereby approve that the thesis in its current form is ready for committee examination as a

requirement for the Bachelor of Computer Science degree at the University of Engineering

and Technology.”

Signature:………………………………………………

iii

ACKNOWLEDGEMENT

I would like to express my great appreciation to Prof. Bui The Duy and Dr. Ma Thi
Chau for their invaluable guidance, comprehensive encourage and useful critiques.
This thesis would not have been possible without their help.

I consider it an honor to work with my colleagues: Tran Minh Luyen, Nguyen Tuan Anh,

Phan Dang Thanh. They go along with me since the beginning of this work, giving me many

useful advices to overcome many obstacles, both in study and life.

I also would like to thank University of Engineering And Technology, faculty of Information

Technology and Human Machine Interaction Lab for all their support.

iv

ABSTRACT

In Computer Vision, 3D registration problem or aligning multiple 3D data sets to
single coordinate system problem is fundamental and essential. Its applications vary
from reconstructing 3D models to shapes matching, which can be applied to medical
visualization, environment reconstruction or robot navigation. This problem has
attracted many researchers’ attention. Many methodologies have been proposed:
searching for global optimization transformation by finding correct correspondences,
local optimization by minimizing an error metric that measures the closeness of two
input data sets or combining both methods. In our thesis, we adapt the local
optimization methodology, specifically, the Iterative Closest Point algorithm to solve
the registration problem. However, as a local optimization process, the initial positions
of point cloud data are crucial for algorithm performance. So, we proposed a semi-
automatic process to aid this weakness and apply the algorithm to register a set of
point cloud data. Three real world data sets have been used for testing this process and
the result shows that the method is efficient and can be used for a real world
application.

v

TABLE OF CONTENT

AUTHORSHIP .. i	

SUPERVISOR’S APPROVAL ... ii	

ACKNOWLEDGEMENT .. iii	

ABSTRACT ... iv	

TABLE OF CONTENT .. v	

List of Figures ... vii	

Chapter 1 ... 1	

INTRODUCTION .. 1	

Chapter 2 ... 3	

BACKGROUND KNOWLEDGE .. 3	

2.1 Registration in general .. 3	

2.2.1 KD-tree ... 4	

2.2.2 Normal estimation ... 7	

2.2.3 Sampling ... 9	

2.3 Iterative Closest Point algorithm .. 10	

2.3.1 Matching ... 12	

2.3.2 Rejection ... 13	

2.3.3 Error metric ... 13	

Chapter 3 ... 17	

OUR PROPOSED METHOD .. 17	

3.1 Semi-automatic registration .. 17	

3.2 Process of registration ... 18	

Chapter 4 ... 21	

RESULTS AND DISCUSSIONS ... 21	

4.1 Data test .. 21	

vi

4.2 The importance of initialization ... 23	

4.3 Comparing with an auto-initial system .. 29	

4.4 Testing with three sets of point clouds ... 34	

Chapter 5 ... 42	

CONCLUSIONS AND FUTURE WORK .. 42	

	
 References ... 43	

vii

List of Figures
Figure 1. Visualize KD-tree in two dimensions case .. 5	

Figure 2. The result of KD-tree in binary tree form .. 6	

Figure 3. An example of plane-to-plane method ... 16	

Figure 4. Semiautomatic process for solving registration ... 18	

Figure 5. Two merging procedures ... 19	

Figure 6. Pair-wise registration process .. 20	

Figure 7. "Room1" data set. Upper image: 3D point cloud. Lower image: 2D image . 22	

Figure 8. "Tree" data set. Left image: 3D point cloud. Right image: 2D image 22	

Figure 9. "Stair" data set. Left image: 3D point cloud. Right image: 2D image 23	

Figure 10. Two different initial positions. Upper image shows the initial position lead
to good result, lower image shows the initial position lead to bad result. Left:
initial position, right: result ... 24	

Figure 11. Errors in iterations of data set "room1" ... 25	

Figure 12. Two different initial positions in data set "tree". Upper image shows initial
position leads to good result, lower image shows initial position leads to bad
result. Left: initial position. Right: result .. 26	

Figure 13. Errors in iterations of data set "tree" .. 26	

Figure 15. Errors in iterations of data set "stair" ... 28	

Figure 16. Pairwise registration (Point Cloud Library Comunity) 29	

Figure 17. Two raw “room1” point clouds ... 31	

Figure 18. “tree” data (a) Left: automatic initialization. Right: result after ICP (b) Left:
manual initialization. Right: result after ICP .. 31	

Figure 19. Two raw "tree" point clouds .. 32	

Figure 20. "tree" data (a) Left: automatic initialization. Right: result after ICP (b)Left:
manual initialization. Right: result after ICP .. 32	

Figure 21. Two raw "stair" point clouds ... 33	

Figure 22. "stair" data. (a) Left: automatic initialization. Right: result after ICP (b)
Left: manual initialization Right: result after ICP ... 33	

viii

Figure 23. Two example point clouds ... 34	

Figure 24. Two perspectives of result point cloud of data set "tree" 35	

Figure 25. Two example point clouds ... 36	

Figure 26. Two perspectives of result point cloud of data set "tree" 37	

Figure 27. Two example point clouds ... 39	

Figure 28. Three different perspectives of result point cloud of data set "stair" 40	

Figure 29. An example that shows the local minima trap ... 41	

Figure 30. An example of initialization of "stair" data set .. 41	

ix

ABBREVATIONS

ICP Iterative Closest Point algorithm

GICP Generalized ICP

PCA Principle Component Analysis

KD-tree K dimensions tree

RGB Red-Green-Blue

SIFT Scale-invariant feature transform

FPFH Fast Point Feature Histograms

RVM Root Mean Square

1

Chapter 1

INTRODUCTION

Nowadays, advancements in computer vision have brought depth data closer and
closer to our daily life. Depth data exists in every corner, not just in computer vision
for robot navigation or medical visualizer, but also in application for interaction
between end users and the environment, such as Kinect fusion (Shahram, et al., 2011)
from Microsoft, and many other applications.

The appearance of cheap and convenient 3D cameras like Microsoft Kinect makes
sampling 3D data widely available for mainstream users, students and researchers.
However, those devices mostly provide raw point clouds data one perspective at a
time, which is not enough for reconstructing 3D models. Therefore, the registration
process comes in to play. Point clouds are taken at multiple views and are aligned
together to achieve complete, higher quality cloud for reconstruction process.

For that reason, registration arises as a subtask in many different applications, and
attracts attention from researcher community. Many approaches have been proposed.
One of them is Iterative Closest Point algorithm (Yang & Gerard, 1991) (Paul & Neil,
1992). Despite the fact that ICP is widely used, it has some significant drawbacks,
which come from the algorithm’s assumptions. Firstly, point clouds participate in
registration process must contain overlap, and the overlap must be large proportion to
number of points in those point clouds. Secondly, the relative position between point
clouds is assumed to be close initially. In addition, another drawback comes from the
characteristic of the process of registration a list of point clouds. Registration means to

2

find the relation between point clouds to transform them to unique coordinate, hence,
one broken transformation will result an unusable combination for further processing.

This thesis proposes a semi-automatic system that utilizes some simple actions from
human to eliminate those drawbacks from original ICP algorithm. Users will control
the initiation step, which is aligning point clouds to satisfy the constraint of close
distance. Moreover, users decide what result is good, what result is bad and decide
whether realigning current result is needed. Also, this thesis adapts the pair-wise
approach. Consecutive point clouds will be aligned pair by pair to maximize the
proportion of overlapping region compared to the cumulative approach: align-merge-
align.

The rest of the thesis is structured as follows. Chapter 2 provides detailed description
about background works that our method depends on. Firstly, it introduces briefly the
general concept of registration and then examines more specific topics for this thesis:
KD-tree, normal space sampling, normal estimation and phases in ICP algorithm.
Chapter 3 contains the proposed method for improving the ICP algorithm and the
process of registering a set of point cloud data. In chapter 4, there are results of several
experiments on real world data. All data were archived by Microsoft Kinect and each
scene contains different geometry features for testing our method.

3

Chapter 2

BACKGROUND KNOWLEDGE

This chapter first introduces some basic terminology of registration in general and then
provides theoretical description of background works, which are KD-tree, normal
estimation with PCA, sampling methods and Iterative Closest Point algorithm.

2.1 Registration in general

This section introduces some basic definitions in 3D registration problem.

Point Cloud data

Point Cloud data is a set of 3-dimensional points achieved by depth sensors, e.g.
Microsoft Kinect.

Registration of point clouds

Registration of point clouds is the process of aligning point clouds to correct position
in a particular coordinate system. More specifically, the goal of registration process is
to find a homogenous transformation matrix that transforms the coordinate system of a
point cloud to other’s to make two point clouds have correct relative position with
each other in physical world.

Homogenous transformation

The Homogenous transformation matrix for 3D case is a 4x4 matrix.

𝐻 = 𝑅 𝑇
0 1

𝑅: 3𝑥3 𝑚𝑎𝑡𝑟𝑖𝑥 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑇: 3𝑥1 𝑚𝑎𝑡𝑟𝑖𝑥 𝑡ℎ𝑎𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛

4

The registration method in the context of this thesis only deals with rigid
transformation. So the scale factor is set to constant 1.

2.2 Data preprocessing

At the beginning of registration process, preprocessing data is very important because
it improves both speed and correctness. It will be described in this section.

2.2.1 KD-tree

In this thesis, various phases depend on computing the nearest neighbors of points
(section 2.2.3, 2.3.1), which is expensive for unstructured point clouds. So the method
of KD-tree is used for organizing point cloud. And its direct application is computing
nearest neighbor. This section provides basis of KD-tree (Jon, 1975) and the nearest
neighbor finding.

First, defining KD-tree. KD-tree is a binary tree, which is constructed as follow:

Algorithm: construct KD-tree

Input: a set of points X measured in n dimensions

Output: a KD-tree that represents X

Parameter: Y is current data set, initially, Y = X. i is current dimension

1 If i > n then i = 1

2 current_node = find median of data set Y in dimension i

3 Separate Y to 𝑌! and 𝑌! which contain remain items in Y having smaller
and bigger value in dimension i respect to current_node

4 current_node.left = build_kd_tree (𝑌!, 𝑖 + 1)

5 current_node.right = build_kd_tree (𝑌!, 𝑖 + 1)

Below is a small example of KD-tree in 2 dimensions. The case of 3 dimensions is
analogous.

5

Figure 1. Visualize KD-tree in two dimensions case

We have a set of data point (4, 4), (3, 6), (2, 3), (5, 7), (6,1)

Choose x coordinate: and the median is 4, choose point (4, 4) as first node. (3,6) and
(2,3) are on the left side of (4, 4). (5, 7) and (6,1) are on the right side of (4, 4)

After that, next coordinate to examine is y. On the left the median in y coordinate is 3.
So (2, 3) will be the next node. (3,6) fall into the right side of (2,3). The right side of
(4, 4) is similar.

6

Figure 2. The result of KD-tree in binary tree form

Second, computing the nearest neighbor. In figure 1, the black dot is a test point, and
the goal is to find nearest neighbor of the test point in the tree. The test point is lie on
the lower half of point (6, 1). So, first, it travels all the way from the root to that node
and got the current smallest distance, which is illustrated by black line (note that, in
the first time it travel, there are nodes in other side of some nodes it did not travel to).
However, to make sure the distance it found is smallest, the algorithm draws a circle
with radius is the current smallest distance, if that circle intersects with the borderline
then there is possibility that other half of border line contains a smaller distance, so it
must travel to the other half. The intersection between the circle and the borderline can
be expressed by comparing the radius with distance of the test point to borderline.

Algorithm: find closest point in KD-tree

Input: KD-tree, a point x

Output: closest point n to x

1 Initialize n = null, distance = infinity

2 Start travel through tree with root node

7

3 If distance > distance (current_node, x)

4 Distance = distance (current_node, x)

n = current_node

5 If (x >= current_node)

6 //only compare the value in dimension used for splitting points

7 Travel recursively right sub tree of current node

8 Else

9 Travel recursively left sub tree of current node

10 If current_node – x < distance

11 //minus between the value in dimension used for splitting points

12 Travel recuresively remain sub tree of current node

2.2.2 Normal estimation

Normal is important feature used for sampling and ICP. However, the computation in
the context of point cloud is not straightforward. It needs to adapt the Principle
Component Analysis method (SVANTE, KIM, & PAUL, 1987). This section first
introduced the principle component analysis and then describes the usage of PCA in
finding normal of points in point clouds.

A. Principle component analysis

Principle component analysis or PCA is a statistical tool. Its main goal is to find a
basis that describes a set of data best. PCA has many applications in various fields
including this thesis domain: computer vision.

The input of PCA is a set of n data, which is sampled in m dimensions. Denote each
vector of data by:

𝑋! = 𝑥! … 𝑥! !

And the matrix X represents all data we have:

𝑋 = 𝑋! … . 𝑋!

Assume that the current basis is:

8

𝐵 =
1 . . 0
.
0 . . 1

To find a new basis that describes data best is equivalent to finding a transformation P
that transforms data matrix X to new data matrix Y. And Y has following
characteristics; the redundancy between dimensions is minimized and the variance in
each dimension, which is considered interesting, should be maximized. The
redundancy is determined by value of covariance between dimensions. Denote the
covariance matrix of a data set Z is: 𝐶𝑜𝑣!. Note that, means of X and Y is assumed to
be 0, if they are not 0 then data of X and Y must subtract their means before the PCA
process. The problem can be formulated as:

𝑌 = 𝑃𝑋

We have to find P to make 𝐶𝑜𝑣! a diagonal matrix. P is called the principle
components of X.

We have:

𝐶𝑜𝑣! =
1
𝑛 𝑌𝑌

!

 =
1
𝑛 𝑃𝑋 𝑃𝑋 !

 =
1
𝑛𝑃𝑋𝑋

!𝑃!

 = 𝑃𝐶𝑜𝑣!𝑃!

The matrix 𝐶𝑜𝑣! is symmetric matrix so:

𝐶𝑜𝑣! = 𝐸.𝐷.𝐸!

𝐸 𝑖𝑠 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑒𝑖𝑔𝑒𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 𝑋

𝐷 𝑖𝑠 𝑎 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥

So:

𝐶𝑜𝑣! = 𝑃 𝐸𝐷𝐸! 𝑃!

Choose 𝑃 = 𝐸! and since the 𝐸 is orthonormal then 𝑃 = 𝐸!!

𝐶𝑜𝑣! = 𝐸!!𝐸𝐷𝐸!!𝐸

= 𝐷

9

The conclusion is P = 𝐸! is the principle component of X.

B. Normal estimation using PCA

After applying PCA to a specific point and its neighbors, we will have three
eigenvectors with their eigenvalues. Two of them have larger eigenvalue than the third
eigenvector. They represent the approximate plane that points lie in. The third
eigenvector with smallest eigenvalue is normal of that point’s surface.

Algorithm: normal estimation

Input: a point cloud X

Output: normal for each points in X

1 for each x in X

2 neighbor = Find n nearest neighbor of x //n can be 20 or any number

3 COV = compute covariance matrix base on neighbor

4 Find eigenvectors and eigenvalue of COV

5 Normal at x = eigenvector with smallest eigenvalue

6 End

2.2.3 Sampling

A typical point cloud data which is achieved from Kinect often contains around
100,000 to 400,000 points or even larger, so if point clouds are passed directly to the
process of registration, the computation complexity will be significant. Another
problem is outliers. They will affect the algorithm to find the wrong transformation.
So, sampling the point cloud to decrease the amount of points and outliers is needed.
Two simple methods are uniform sampling or random sampling. They do decrease the
amount of points. However, when applying those two sampling methods in ICP,
another problem arises. In some cases, when input clouds are “geometrically hard” for
ICP to process, for example the symmetric case, small features in the cloud is essential
for computing the correct alignment, those features are not considered in any two
methods above. For that reason, the Normal Space Sampling is proposed in (Szymon
& Marc, 2001). Normal Space Sampling selects points that maximize the distribution
of points’ normal. For the implementation, first thing to do is constructing a 3d

10

histogram of normal with a specific number of bins in x, y, z dimension, then go
through all bins sequentially until the desired number of sample is reached.

2.3 Iterative Closest Point algorithm

This thesis studies the problem of registering multiple views. And we use ICP (Yang
& Gerard, 1991) (Paul & Neil, 1992) as a core for this process, so this section will
introduce the concept of ICP.

Problem statement:

Algorithm: normal space sampling

Input: a set of points X and set normal N

 Number of desired points

 Number of bins in each dimension

Output: a set of sampled points

1 Construct histogram of normal N

2 For each n in N

3 put n in to appropriate bin

4 end

5 current_bin = 0

6 While not picked enough point and histogram not empty

7 If current_bin not empty

8 Random pick one point

9 Delete picked point in current bin

10 current_bin++

11 If current_bin >= histogram.size

12 current_bin = 0

13 end

11

Given two point clouds X = {𝑥!} (i = 1 … m) and Y = {𝑦!} (i = 1 … n) in 3-
dimensonal space. The initial transformation is assumed being known (initial system
will be discuss in chapter 3). There exists a transformation T, if T is the correct
transformation from X to Y then the function F below will be minimized:

𝐹(𝑇) = 𝑞!𝑑(𝑇𝑥! , 𝑌)!
! (1)

Where:

𝑞! = 0 𝑖𝑓 𝑥! 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟, 𝑞! = 1 𝑖𝑓 𝑥! 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑛 𝑜𝑢𝑡𝑙𝑖𝑒𝑟.

𝐴𝑛𝑑 𝑑 𝑥,𝑌 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑥 𝑡𝑜 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 𝑌

This thesis only solves the registration problem between point clouds, so, using the
definition Y = {𝑦!} with equation (1) we can rewrite function d as:

𝑑 𝑇𝑥! ,𝑌 = 𝑑 𝑇𝑥! ,𝑦! (2)

𝑥! 𝑎𝑛𝑑 𝑦! 𝑎𝑟𝑒 𝑝𝑎𝑖𝑟 𝑝𝑜𝑖𝑛𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑖𝑛𝑡

And re-formulate the problem as:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑇 𝑞!𝑑(𝑇𝑥! ,𝑦!)!

! (3)

From its first introduction by (Yang & Gerard, 1991) and (Paul & Neil, 1992), many
variants have been proposed to resolve those problems (Szymon & Marc, 2001)
(Aleksandr, Dirk, & Sebastian, 2009). In the iterative process below, ICP can be break
down into three phrases: matching, rejecting, error metric and minimization. The next
three sections will examine each phrase in detail.

The iterative process can be described as follow:

12

2.3.1 Matching

(Szymon & Marc, 2001) provided a comparison between several methods: closest
point, closest compatible point, normal shoot, normal shoot compatible, project,
project and walk. According to their research, the “project” like methods have lowest
convergence rate, the “closest point” method is more sensitive to error than others
methods. They hypothesize that when meshes are still relatively far from each other,
the closet point-matching algorithm generates large numbers of incorrect pairings.
However, they also concluded that closest point is the most robust for “difficult”
geometry. This thesis adapts the closest point method as matching strategy. The
reasons are:

+ The problem with incorrect pairing, there is a rejecter to reject fail
correspondences. And user does the initialization in this thesis, so initial
position is assumed to be close.

+ In real world, “difficult” geometry will likely to appear often, so a robust
strategy is very important to get a good result.

The distance for computing “closest point” in this context is the Euclid distance of two
points 𝑑 (𝑥,𝑦).

 Algorithm: Iterative closest point

Input: source cloud ! = {!!}, target cloud ! = {!!}
 Output: A transformation matrix from !!!"!!

1 !! ← !!!
2 While (not converged or max iterations not reached)
3 For !!! in !
4 Correspond pair !! ,!! = Find matching point in Y

5 Reject invalid pair point
6 End

7 ! = !!"#min! !(!!! ,!!)!

8 End
9 return T

13

A naive method to find the closest point of a point 𝑥 in a point cloud 𝑌 is searching all
the points in point cloud 𝑌. However, using K-d tree to organize the point cloud (see
section 2.2.1 for more information), searching for closest point is accelerated.

2.3.2 Rejection

To transform equation (1) to equation (2), the distance of point 𝑥! to cloud 𝑌 is
transformed to distance between 𝑥! and individual point 𝑦! of cloud 𝑌. However, the
perfect point pairs are not known yet, so the algorithm find point pairs base on the
Euclid distance in previous section. So, there exist fail point pairs, which affect the
result of ICP. For that reason, those fail pairs should be filtered. In equation (1), 𝑞! is
used for rejecting point outlier may cause by data acquisition, for convenient we also
use it for rejecting fail point pairs in equation (2). So the definition of outlier is:

 + Point that caused by data acquisition error

 + Invalid point pairs

The first problem was handled by sampling data in section 2.2.3. This rejection phrase
of ICP handles invalid point pairs case.

The purpose of registration is to merge two point clouds to produce a point cloud with
more information than an individual point cloud. So two point clouds contain overlap
region to give information to registration process and also contain region that have
extra information. That region does not contribute to the registration process and the
distance of point pairs that contain those additional points should have a large value
compared to pair point in the overlap region. So, the distance rejecter will reject any
point pairs that have distance beyond a specific threshold. Users can set this threshold.

2.3.3 Error metric

As stated, ICP is an optimization problem and can fall into the local optimum trap, all
the methods mentioned above is to enhance the chance to reach a global optimum
result and also decrease the convergence rate. And error metric plays a very important
role in both cases. (Paul & Neil, 1992) proposed the point-to-point metric, a metric
that computes transformation by minimizing the distance between points, while (Yang
& Gerard, 1991) used point-to-plane error metric. The distance function in point-to-
plane is computed by distance from a point and the tangent plane of its
correspondence. (Szymon & Marc, 2001) discussed about both methods.

Point to point error metric, the equation (2) becomes:

14

𝑑 𝑇𝑥! ,𝑦! = (𝑇𝑥! − 𝑏!)! (4)

Point to plane error metric, the equation (2) becomes:

𝑑 𝑇𝑥! ,𝑦! = (𝑛!(𝑇𝑥! − 𝑏!))! (5)

𝑛! 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑏!

𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑥! 𝑎𝑛𝑑 𝑦! 𝑎𝑟𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒 𝑝𝑎𝑖𝑟,𝑤ℎ𝑖𝑐ℎ 𝑤𝑎𝑠 𝑓𝑜𝑢𝑛𝑑 𝑖𝑛 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑡𝑒𝑝

(Aleksandr, Dirk, & Sebastian, 2009) proposed a different approach by apply a
probabilistic model to cope with the problem. And they showed that both pervious
methods are special case of their method. That method is called “Generalized ICP”.
This thesis use Generalized ICP as error metric.

The output of pervious two steps is two sets of points X = 𝑥! !!!...! and Y = 𝑦! !!!...!,
𝑥! and 𝑦! are correspondence. The method assumed that there exists two perfect
correspondence sets 𝑋 = 𝑥! !!!...! and 𝑌 = 𝑦! !!!...! generate X and Y independently
by 3-dimensional multivariate normal distribution.

𝑥! ~ 𝒩(𝑥!,𝐶!!)

𝑦! ~ 𝒩(𝑦!,𝐶!!)

𝐶!! 𝑎𝑛𝑑 𝐶!! 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠

Denote 𝑇∗ is the correct transformation between two point clouds, we have:

𝑦! = 𝑇∗ . 𝑥! (6)

Denote 𝑑!! = 𝑦! − 𝑇𝑥! we have:

𝑑!!
∗ = 𝑦! − 𝑇∗. 𝑥!

Since 𝑥! and 𝑦! generated by two normal distribution:

𝑑!!
∗ ~ 𝒩 𝑦! − 𝑇∗. 𝑥!,𝐶!! + 𝑇∗.𝐶!! . 𝑇∗ !

Apply (6):
𝑑!!

∗ ~ 𝒩 0,𝐶!! + 𝑇∗.𝐶!! . 𝑇∗ !
The transformation of T will be estimated by:

𝑇 = argmax
!

𝑝(𝑑!!)
!

= argmax
!

log (𝑝(𝑑!!))
!

Simplified to:

𝑇 = argmin! (𝑑!!)!(𝐶!! + 𝑇.𝐶!! . 𝑇 !)!!(𝑑!!)! (7)

15

If we use:

𝐶!! = 𝐼

𝐶!! = 0

Then (5) turns into (4)

And for the point-to-plane the setting was:

𝐶!! = 𝑃!!!

𝐶!! = 0

𝑤ℎ𝑒𝑟𝑒 𝑃! 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑛𝑡𝑜 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑓 𝑏!

Two settings above are point-to-point, and point-to-plane error metric. (Aleksandr,
Dirk, & Sebastian, 2009) proposed a different setting with the name of plane-to-plane
error metric. The error metric assumes that points have large variance in their local
plane and vary little in their surface normal direction. Consider a point with normal
vector 𝑛! = [1, 0, 0], to model the assumption above, the point-to-plane algorithm
assigns the covariance of that point to:

𝐶𝑜𝑣 =
𝜀 0 0
0 1 0
0 0 1

𝜀 𝑖𝑠 𝑎 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑤ℎ𝑖𝑐ℎ 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑙𝑜𝑤 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑎𝑙𝑜𝑛𝑔 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑒.𝑔 𝜀 = 0.001 𝑜𝑟 𝑚𝑎𝑦𝑏𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟

For a random point, we have to rotate above 𝐶𝑜𝑣 matrix to the point surface normal. In
section 2.2.2, surface normal is computed by PCA, which is the eigenvector that have
smallest eigenvalue. Denote the rotation matrix R that rotates 𝑛! to that normal vector.

With that, we compute 𝐶!! and 𝐶!! by:

𝐶!! = 𝑅!! .𝐶𝑜𝑣 . 𝑅!! !

𝐶!! = 𝑅!! .𝐶𝑜𝑣 . 𝑅!! !

Then substitute to (7) to compute T.

16

Figure 3. An example of plane-to-plane method

The figure above illustrates an example where there are several fail matches (inside the
ellipse). With plane-to-plane configuration, the sum of two covariance matrices will
act as a penalty for incompatible normal direction. Hence reduce the influence of those
fail matches to overall minimization.

17

Chapter 3

OUR PROPOSED METHOD

This chapter presents a semi-automatic process to solve the registration problem and
also discuss two processes of registering a set of point clouds.

3.1 Semi-automatic registration

The core problem we tackle in our method is producing initialization for ICP. ICP is
based on local optimization approach, and for this category, initial position is critical.
This problem is hard, but with a little help of human, the obstacle is greatly reduced.
The initial position between two point clouds will be manually adjusted. With this
simple action, the initial position for point cloud is much more reliable and dynamic.
Also, as we mentioned before, pair-wise method is sensitive to error, every link should
be monitored carefully or else, failure is likely to occur. As far as we know, there isn’t
any mechanism to evaluate error automatically since the correct alignment is
unknown. Hence, user’s confirmation to accept the result or re-register them with
different initial position is needed. For these reasons, we proposed a semi-automatic
mechanism for register point clouds.

Inputs of the process are two point clouds: point cloud 1 and point cloud 2. First, two
point cloud are passed to an interaction window with their initial position is raw data
achieved from scan. At this stage, users can freely move the data to create a good
initialization position for two point clouds. After that, the initial pose will be used for
ICP algorithm. Note that users can move clouds very close together but the result
needs to be refined by ICP to achieve the best output. The ICP algorithm in this thesis
uses the closest point matching, distance rejecter and the generalized error metric.

Finally, two point clouds are merged and showed to user. If users confirm that the
result are bad then the process resets and user can set up another initial position. If the

18

result is confirmed as good result then process produces the transformation between
two point clouds. This process is illustrated in figure 4.

Figure 4. Semiautomatic process for solving registration

3.2 Process of registration

The registration process of a set of point clouds is broken down to the pair-wise
registration problem. There are two choices to implement this process, the first one is
to start with two raw point clouds, register and merge them to one point cloud, then
use that output as input of next registration, the second one only use original input
point clouds, register to find the transformations between them and merge them after
all transformation have been found to produce the output cloud (figure 5).

The first method seems natural, however, it has some critical drawbacks:

1. As the process run, the input data grow in size, which slows all the
consecutive computation. And also, the input data were changed at runtime. So

19

preprocessing step has to be re-do each iteration. Those two reasons make the
processing time increase dramatically.

2. Overlap region between two inputs will be smaller and smaller, and vice
versa with outlier, which will affect the correctness of register result. This
problem can be omitted in most cases if users initialize the two inputs close to
correct alignment, and using closest point matching in ICP.

The second method has an upper hand. The input data is original input data. So the
speed is unchanged as well as overlap region between two point clouds. But both
methods are sensitive to error because of the dependent characteristic of registration,
one registration fail (large error in alignment) in half of overall process will result
failure in the whole process. That’s the case of large error. However, in the situation of
small errors, it may be acceptable and usable for small errors occur in the first situation
but in the second, the small errors can become significant. As we described, the second
method computes the transformation between original input point clouds and merge
them as final result after all transformation have been computed, if small errors occur
in several dependence transformations, they accumulate.

Figure 5. Two merging procedures

!!!!!!!!!!!!!!!!! !
a!!!
!
!

b!

result!

local!result!

cloud[0]!

cloud[1]!

cloud[2]!

cloud[2]! cloud[1]! cloud[0]!

20

Figure 5 (a) shows the first method, cloud[0] and cloud[1] are registered and merged
to local result then local result registered with cloud[2] to produce result. (b) shows the
second method, cloud[1] is aligned to cloud[0], cloud[2] aligned to cloud[1], cloud[2]
can later be aligned to cloud[0] by those two relationships.

Despite the fact that the second method is more sensitive to error, the first method
computational cost is much more significant if the data set consists of about 20 or
higher point clouds, each point cloud contain approximately 300000 points, which is
normal for a small room data sets. For that reason, we choose the second method for
our process.

To be more specific, the registration process is illustrated in figure 6. Consider a set of
point clouds of multiple views, each time, two consecutive point clouds i and i+1 will
be registered in pairwise way. Output will be a transformation from point cloud i+1 to
i. And after registrations between all pairs, we have transformation matrices from next
point cloud to previous one and we can transform all point cloud to the first point
cloud by multiply those matrices (figure 5).

Figure 6. Pair-wise registration process

21

Chapter 4

RESULTS AND DISCUSSIONS

This chapter describes set up and results of experiments we performed to evaluate
performance of our proposed method. It consists of a section to introduce data sets, an
experiment to show the importance of different initial position, a comparison between
our system with an automatic system and an experiment to test the performance of
registering a set of point clouds.

4.1 Data test

We have prepared three different data sets for our experiment.

First data set is “room1” data set, which consists of 21 point clouds. It contains simple
objects with smooth surfaces. It is showed in figure 7.

Second data set is “Tree” data set, which consists of 9 point clouds. “Tree” has
random geometry with leaves. “Tree” data set is shown in figure 8.

Third data set is “Stair” data set, which consists of 5 point clouds. It is a hard data set
for ICP to find a good result. Objects are all similar. So it is very hard for ICP to find
the good correspondence and the error metric to penalize the wrong matches “Stair”
data set is shown in figure 9.

All the data sets were archived by using Microsoft Kinect, each point cloud consist of
approximately 300,000 points

22

Figure 7. "Room1" data set. Upper image: 3D point cloud. Lower image: 2D image

Figure 8. "Tree" data set. Left image: 3D point cloud. Right image: 2D image

23

Figure 9. "Stair" data set. Left image: 3D point cloud. Right image: 2D image

4.2 The importance of initialization

To illustrate the importance of initialization, we did a simple experiment. To measure
a correct error of process, we take a point cloud with two different positions as two
input clouds. So, the real point pairs are known. The error is estimated by root mean
square (RVM) of distance between points in real pairs.

𝐸 =
 (𝑥! − 𝑦!)!!

𝑛

𝑥! ,𝑦! 𝑖𝑠 𝑟𝑒𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟

𝑛 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

Figure 10, 12 and 14 illustrate two different initial positions given a different result.
All three figures contain one initial position leads to good result (above) and one initial
position lead to fail result (below). Also, figures 11, 13 and 15 illustrate RVM error for
those scenes respectively. A small change will make the algorithm fail to find a result.
So, with the option of custom the initial position in our approach, user can have the
ability to find best initialization to compute correct solution for their data.

24

!
!

!

Figure 10. Two different initial positions. Upper image shows the initial position lead
to good result, lower image shows the initial position lead to bad result. Left: initial
position, right: result

25

!

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!
10!

iter
atio
n!1
!

iter
atio
n!2
!

iter
atio
n!3
!

iter
atio
n!4
!

iter
atio
n!5
!

iter
atio
n!6
!

iter
atio
n!7
!

iter
atio
n!8
!

iter
atio
n!9
!

"Fail"!scence!error!(cm)!
"Success"!scene!error(cm)!

Figure 11. Errors in iterations of data set "room1"

26

Figure 12. Two different initial positions in data set "tree". Upper image shows initial
position leads to good result, lower image shows initial position leads to bad result.
Left: initial position. Right: result

!

0!
2!
4!
6!
8!
10!
12!
14!
16!
18!
20!

iter
atio
n!1
!

iter
atio
n!2
!

iter
atio
n!3
!

iter
atio
n!4
!

iter
atio
n!5
!

iter
atio
n!6
!

"Fail!scence!error!(cm)!
"Success!scene!error(cm)!

Figure 13. Errors in iterations of data set "tree"

27

Figure 14. Two initial position of "stair" data. Upper image shows initial
position leads to good result, lower image shows initial position leads to bad
result. Left: initial position. Right: result

28

!

0!

10!

20!

30!

40!

50!

60!

70!

Iteration!
1!

Iteration!
2!

Iteration!
3!

Iteration!
4!

Iteration!
5!

Iteration!
6!

"fail"!scene!erro!(cm)!
"success"!scene!error!

Figure 15. Errors in iterations of data set "stair"

29

4.3 Comparing with an auto-initial system

In this section, we compare our semi-automatic system with an automatic system.

4.3.1 Automatic system

The automatic system automates the initialization step then passes the result to GICP
algorithm just like semi-automatic one. The automatic initializer is based on the
process described in figure 16. A more detail description can be found at (Point Cloud
Library Comunity)

Figure 16. Pairwise registration (Point Cloud Library Comunity)

To be more specific, we use SIFT (Lowe, 2004) to detect key points, FPFH (Radu,
Nico, & Michael, 2009) as descriptors and Sample Consensus Initial Alignment (Radu,
Nico, & Michael, 2009) for remaining steps.

30

4.3.2 Comparison

To compare two methods, we apply them to three registration situations, which are
taken from three data sets in section 4.1.

Figure 17 shows the original position of two “room1” point clouds. One point cloud is
colored in red and one point cloud is colored in green. The initial position is computed
automatically or manually set. The point clouds on the left side of figure 18 are two
initial positions. Figure 18 (a) is initialization of automatic system, (b) is initialization
of semi-automatic system and the results of two initializations after passed to GICP are
on the right side. The test case of “tree” data is shown in figure 19 and figure 20.
“Stair” test case is shown in figure 21 and figure 22. The structured of those two test
cases is similar with “room1” case.

In three cases, we can see that automatic initialization failed to find good initial
positions for ICP; the “room1” data set has the best result, however, error is still
observed around the calendar. In two others cases, the situation is much worse,
especially in “stair” data, the relative position of two point clouds are further even
comparing with raw position. In our semi-automatic system, the results after GICP
steps of all three test cases are good.

31

Figure 17. Two raw “room1” point clouds

a. automatic system

b. semi-automatic system

Figure 18. “tree” data (a) Left: automatic initialization. Right: result after ICP (b) Left:
manual initialization. Right: result after ICP

32

Figure 19. Two raw "tree" point clouds

a. automatic system

b. semi automatic system

Figure 20. "tree" data (a) Left: automatic initialization. Right: result after ICP (b)Left:
manual initialization. Right: result after ICP

33

Figure 21. Two raw "stair" point clouds

a. automatic system

b. semi automatic system

Figure 22. "stair" data. (a) Left: automatic initialization. Right: result after ICP (b)
Left: manual initialization Right: result after ICP

34

4.4 Testing with three sets of point clouds

In this section, we perform registration in three data sets to produce three combined
results.

4.4.1 Room1 data set

Figure 23. Two example point clouds

35

Figure 24. Two perspectives of result point cloud of data set "tree"

Figure 23 contains two examples of point clouds in two different angles of the actual
scene and the result is shown in Figure 24. The first image in figure 24 is front view of
total point cloud. The second image shows the top view of the point cloud.

The first image indicates a good result, the region 2 and region 3, lines are straight,
small objects like the plug and the door holder can be clearly seen. However, in region
1, borders of the calendar contain errors. As stated in section 3.1, pair-wise method
have a risk of accumulate errors, but the error only occur in region1, not in others, so

36

we predict that, this is not caused by alignment error but by the calibration error.
Calibration is the mapping between RGB-value and depth value of camera. The depth
alignment is true but the color is not.

4.4.2 Tree data sets

!
!

Figure 25. Two example point clouds

37

!

Figure 26. Two perspectives of result point cloud of data set "tree"

38

Figure 25 shows two example point clouds in different views before registration.
Figure 26 shows two different perspective of “tree-result”. Same as “room1” result, the
lines remain straight after registrations; the leave and the flowerpot are in place. The
result does not have significant visual errors.

4.4.3 Stair data sets

39

Figure 27. Two example point clouds

40

Figure 28. Three different perspectives of result point cloud of data set "stair"

Figure 27 shows two examples of point clouds in “stair” data set. From first two
pictures in figure 28, the alignments of depth and horizontal coordinate are good (from
front view). However, the third picture, in region 1, there is an error between the stairs.
Stairs only contain smooth surfaces geometry, however, there are many points that
have similar normal direction, which is used for weighting point pairs in generalized

41

ICP error metric. The point pairs that are fail matches but still are evaluated as true, the
weighting is still big (GICP only penalize pairs with the incompatibility in normal
direction) and out-numbered the pair needed to be align to give correct alignment (a
small 2D example in figure 29). So for the stair data set or some data sets that similar
pattern, they require a precise initialization. (Figure 30)

Figure 29. An example that shows the local minima trap

Figure 30. An example of initialization of "stair" data set

42

Chapter 5

CONCLUSIONS AND FUTURE WORK

To sum up, this thesis examines the 3D registration problem base on the state-of-the-
art ICP algorithm. We proposed a semi-automatic mechanism for creating initial
positions of point clouds as the input for ICP algorithm and also a process for register
a set of point clouds. We have tested our method with three different data sets; each
contains a specific geometry pattern. The registration results of two data sets with
smooth and free form surfaces are good. So, with small aid from human, we can have
a registration application program for most general scene. E.g. constructing rooms or
object models. However, in the experiment section, errors are also been observed. The
method may not work well with situation point clouds with large portion of points
have similar surface normal. In addition, the ICP in this thesis used closest point
matching, which is fast with using KD-tree, but the only information it used is the
distance between two points. So, in the future, we will try to find better methods that
best adapt with GICP and generate more precise point pairs.

43

 References
Aleksandr, S. V., Dirk, H., & Sebastian, T. (2009). Generalized-ICP. Robotics:
Science and Systems.

Jon, L. B. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM , 509-517.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.
International journal of computer vision 60.2 , 91-110.

Paul, B. J., & Neil, M. D. (1992). Method for registration of 3-D shapes. Robotics-DL
tentative (pp. 586-606). International Society for Optics and Photonics.

Point Cloud Library Comunity. (n.d.). The PCL Registration API. Retrieved May 13,
2015, from pointclouds.org:
http://pointclouds.org/documentation/tutorials/registration_api.php#registration-api

Radu, R. B., Nico, B., & Michael, B. (2009). Fast Point Feature Histograms (FPFH)
for 3D Registration. Robotics and Automation, 2009. ICRA'09. IEEE International
Conference on. IEEE.

Shahram, I., David, K., Otmar, H., David, M., Richard, N., Pushmeet, K., et al. (2011).
KinectFusion: real-time 3D reconstruction and interaction using a moving depth
camera. Proceedings of the 24th annual ACM symposium on User interface software
and technology (pp. 559-568). ACM.

SVANTE, W., KIM, E., & PAUL, G. (1987). Principal component analysis.
Chemometrics and intelligent laboratory systems, (pp. 37-52).

Szymon, R., & Marc, L. (2001). Efficient variants of the ICP algorithm. 3-D Digital
Imaging and Modeling, 2001. Proceedings. Third International Conference on (pp.
145-152). IEEE.

Yang, C., & Gerard, M. (1991). Object modeling by registration of multiple range
images. Robotics and Automation, 1991. Proceedings., 1991 IEEE International
Conference on (pp. 2724-2729). IEEE.

